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A. v. &3ZNENEV 

An ~nvesfigation is carried out of a system of ordinary equations with rotating phases whose frequerteies 

(rotation speeds) form a hierarchy in terms of powers of a small parameter. Attention is also devoted to a 

more complex system, whose right-hand sides also contain terms “with zero means” (averaged over 

trajectories of fast motions). The scheme proposed to deai with such systems invoives the successive 

apportion of a standard procedure which isolates the “fastest” variables to within a certain accuracy in 

terms of the small parameter. The degree of correspondence between the solutions af exact equations and 

those of the equations thus averaged is determined over an as~mptotica~~~ large time interval, during which 

the “slowest” variable increases by one order of magnitude. 

Svs-rEMs of equations of the type considered, with hier~r&hies of frequencies, arise berth in 
treatments of the problem in [lr 2] and in the light of certain special features, emphasized in [3,4], 
of the theory of simple resonance in essentiahy non-linear systems: when averaging procedures are 
apphed to resonance trajectories, it turns out that the equations of the first approximation are 
~~~Iton~an (8s observed for a speciaf case in IS])- As a consequence one obtains a “stratification’” 
of motions in accordance with a hierarchy of speeds, more complicated than the traditional division 
into fast and SIOW motions. 

The approach in question is effective because it achieves a reduction of the initial system at least 
to the same degree as in the uon-resonant case. In the ~adition~ treatment, however, “investiga- 
tion of the resonant case always leads to averaged systems of higher dimensions” [6]. 

The averaging scheme praposed here must be justified as a single entity, because it is not obvious 
that ind~~duaI “Ievefs” of averaging may Iegi~ateIy be appIied over an asymptoti~Ily large time 
interval. In fact, averaging with respect to the “fastest” variable (called “partial” averaging in [4]) 
has been justified only over a time interval that is too short for the “‘sfowest” variatile to increase by 
one order of magnitude. 

A sequence of averaging pr~edures has been just~~ed as a single entity for the case of a hierarchy 
of two rotating phases [7]. The treatments in 13, 81 differ from that presented here. 

1. STATEMENT QF THE PROBLEM 

We consider a system of equations in which the frequencies {phase rotation speeds) form a 
hierarchy in terms of powers of a small positive parameter E: 

E’ = e”X, d,,_1 = G’?+An_lr . ” .) cc@‘ = A* 0.1) 

where X, A;-” , . . . , Aa are functions of real arguments x, 01,-~, + . a + cxo, E, defined for E E [0, eO] in 
some domain D of x space ahd &r-periodic in the variables ~t,._~, . . , , a~. The functions on the right 
of (1.1) are assumed to be tz times d~fferen~abIe with respect to x: and i times di~erentiabIe with 
respect to 0~~ (i=n-1, . . *, l), uniformly with respect to x in D and E in [0, Q]; they are also 
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assumed to be measurable as functions of CQ. In addition, the functions Aj are bounded away from 
zero uniformly with respect to x in D and E in [0, EO]. 

We will construct a sequence of n changes of variables, each splitting off an equation for the next 
phase (in order of decreasing rotation frequencies). The right-hand sides of the remaining equations 
will continue to depend on the split-off phases only in small terms, of the order of E”+I for the 
slowest variable and em-n+i+l for the ith rotating phase, where m3n is a number that ultimately 
determines the accuracy of the final averaged system. 

For example, the kth change of variables (k = 1, . . . , n), 

whereui(i=n,. . ., k) are functions of 2, Y~_~, . . . , Y~_.~, E, uniformly bounded with respect to z 
in D and E in [0, ~~1, reduces the system of equations 

to the equivalent form 

2’ = en2 (2, yn_1, . * .( yk, 8 + E"'+~F,, 

$1-1 = enwirn-l (2, Yn-1, . . ., ‘rk 5 E) $ arnFn.-, 
. *a * *. * * * . * * *. * * 

Yk’ = sk& fz, yn+r l . .) yr, E) -f- P-n+k+xF~ 
$’ k-f = &"-'rk I b’ Yn-1 - , , . . ., Yk, &-I, 8) + em-n+rili;,-, 

by averaging over the &-r trajectory. 
The definition of the a priori unknown functions u,, . . . , ukr 2, r,_, , . . . , r,_, involves no 

difficulties if the right-hand sides of Eqs (1.1) are smooth functions of E in the domain of interest. 
There is no need to specify the functions F,, , , . . , Fk_l. 

As to the equations whose left-hand sides are not affected by the change (1.2), their right-hand 
sides are expanded in Taylor series, being expressed, as a result, in terms of the newly introduced 
variables instead of the old ones. 

After n changes of variables of type (1.2), system (1.1) is reduced to the equivalent system 

E’ = ,s”s (E, E) + e*+lG,, 

q.Ll = E"-WJ,,-~ (E, Q)~-~, 8) -I- E"'G,,-~ 
. . . . * .I a. 6, ..* . . * . . 

~0' = % (E, 'P~--~, + . .f rpo, 8) i- E'-~+~G~ 

(1.3) 

Along with system (1.3), which we call the equations of the mth approximation, we will also 
consider what we call the truncated system of equations of the mth approximation: 
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The question is, does the solution of system (1.4) yield a satisfactory approximation to that of the 
original system (1. l)? 

2. JUSTIFICATION OF THE USE OF THE TRUNCATED EQUATIONS OF THE mth 
APPROXIMATION 

Under the conditions stated in Sec. 1, the functions on the right of equations (1.4) are IZ times 
differentiable with respect to n and i times differentiable with respect to &, i = n - 1, . . . , 0 
preferring, of course, to functions that depend on X/J:}, unifo~ly with respect to n in I) and E in 
[O, Q]; moreover, @a is a measurable function of $a and the functions Qi are bounded away from 
zero. In addition, the functions Gi on the right of Eqs (1.3) are bounded uniformly with respect to 5 
in D and F in 10, ~a]. 

Lemma. Under the above conditions, if the systems of equations (1.3) and (1.4) are integrated 
with the same initial data for corresponding variables over a time interval of the order of E-~, the 
following estimates will hold (on the added assumption that the 5 and IJ trajectories do not leave D): 

1 g - q 1 = 0 (&n’-‘,+l) (2.1) 

1 ‘pi - qcti 1 = 0 (P+‘*ifl), i = n - 1, . . ., 0 (2.2) 

The proof of (2.1) involves comparing the first equations of systems (1.3) and (1.4), using the Lipschitz 
condition for the function B and Gronwall’s Lemma. 

We shall prove only the estimate 

I %_l--*n-1 I - 0 (em-") (2.3) 

as the proofs of the other estimates in (2.2) are essentially similar. 
Transforming the first two equations of systems (1.3) and (1.4) to the independent variables (P~_~ and r&t, 

which are monotone functions of time, we obtain equations in standard form: 

d&h@,_l = ef (%, qkl. 8) + P?+~+~H (2.4) 

dnfd’#n-l = sf (7, ‘@n-r, a) (2.5) 

where H is uniformly bounded with respect to 5 in I) and E in [0, FO]. Applying standard inequalities of the 
method of averaging [9] to Eqs (2.4) and (2.5), we obtain an estimate 

j % (Q)t+i = S) - 1] (*n-r = S) I = 0 (~m-n+l) (2.6) 

which is true for s values in an interval from SO = (pnel (t = 0) = &_I (t = 0) to s.+, Is* -sgj = 0(&-l). Observe 
that the variables (~~._r and &_r change by a quantity of the order of E-I over a length of time of the order of 
-?I & . 
In equality (2.6) is not quite similar to (2-l), as it describes the proximity of 5 and q as they vary over 

trajectories of the fast variables (P”_.~ and Jl,,_r , respectively. 
Talking quotients in the second equations of systems (1.3) and (1.4) and integrating along the (~~-1 and Jl,r_r 

trajectories, we obtain 

Qn_rfO ‘Pn-rG) 

5 [@n_, (2, ‘&_r’ @l-r dzc;,_, = j I@,,-* (5, (P,l_ti s) -k a’ll-n+r~~_l~-r @,_, 
8, se 

where t is some specific time in the interval [O, fJ, t* = O(E-“). 
To fix our ideas, let us stipulate that the specific time t is such that JI,_t (t) E [SO, qnpl (t)] (the proof is only 

slightly modified if this not the case). Expanding Qnel(q, Jr,_, , E) in Taylor series about rl= 5 and using (2.6), 
we obtain 

&-r(f) 

s Pk., (% ($& $ln_lt s) + 0 (em-ns1)J-1 d9,_, = 
80 

(P,-l(t) 
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Estimating the integrals appearing in this equality over their common path of integration [so, JI,_r (t)], (that 
the path of integration is indeed the same for both follows from our assumptions), and using the fact that @“-r 
is bounded away from zero, we obtain 

‘Pn_r(O 

[I& (0 -sol x 0 (E m-n+l) = 5 Ia,+ (EI ‘P,+~ 8) + em-n+lG,_ll-l Q,_, 
4&l(t) 

whence, since @,,_r is bounded away from zero and the intervals over which Q,,_I and +,,_r vary are of the order 
of E-l , we obtain (2.3). 

Theorem 1. Under the assumptions listed in Sec. 1, the following estimates hold over time 
intervals of the order of E-“: 

IX - z0 1 zz 0 (g+-llfl) 

1% - aio ] = 0 (~~-~~+*+l), i = n - 1, . . ., 0 

where x0 and aio (i = n-l, . . . , 0) are approximate solutions of the original system of equations 
(l.l), obtained by changing the variables in accordance with (1.2) and integrating the truncated 
equations (1.4) instead of the exact equations (1.3) with the appropriate initial data. It must also 
be assumed that the q trajectory, together with a certain neighbourhood of the order of Pen+‘, 
lies in D. 

3. SYSTEM OF EQUATIONS WITH HIDDEN HIERARCHY OF PHASE ROTATION SPEEDS 

Consider the system of equations 

5’ = ES, f .PX (3.1) 

a’,, = sS,_r + e”-lAn_l, . . ., at’ = eA,, aO’ = A, 

The functions X, A,_1, . . . , A0 on the right (which depend on X, CX,_~, . . . , a0 , E) have the same 
properties as the similarly named functions in Sec. 1; the functions S,, S,_l, . . . , Sz (also 
dependent on X, OL,,_~, . . . , ao, E) have the same properties as the functions X, A,_1, . . . , A2 in the 
corresponding equations, except that they are not assumed to be bounded away from zero. 

Suppose the functions Si (i = n, . . . , 2) have the following property: if averaged over the 
trajectories of the fast motions (beginning with the fastest), the smallness of the result varies at each 
step by one order of magnitude, so that after i - 1 averagings the final result is of order &i. Then 
there exists a sequence of n changes of variables that reduces Eqs (3.1) to an equivalent system of 
equations (1.3) of the mth approximation; the kth change of variable is 

9 = z + eu,, l&-i = ?,,-I + e&,-r, . . ., & = Yk + euk (3.2) 

whereu,, . . ., uk (which are functions of z, Y,,_~, . . . , yk_ 1 , E) are uniformly bounded with respect 
to z in D and E in [0, ~~1. 

Theorem 2. Under the above conditions the following estimates hold over a time interval of the 
order of E-“: 

IX- r”]=O(e), ]ai-ai”]=O(d), i=n-1, . . . . 1 
j = min {I, m - 2n + i + I}, 1 a0 - aoo I = 0 (emsan+r) 

if m c 2n - 1; but if m 3 2n - 1 one has estimates 

lx- x0 1 = 0 (em-2n+2), 1 ai _ aio 1 = 0 (em-2n+a) 

i = n - 1, . . ., 1; 1 a0 - aoo 1 = 0 (emepn+l) 

where x0 and oio are the approximate solutions of Eqs (3.1) obtained by changing variables in 
accordance with (3.2) and integrating the truncated equations (1.4) instead of the exact system (1.3) 
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with appropriate initial data. It must also be assumed that the q trajectory, together with a certain 
neighbourhood of the order of &j, j = max { 1, m - 2n + 2)) lies in D. 

As an example of the application of Theorem 2 we cite the justification [lo] of a sequence of 
averaging procedures in the resonant case in an essentially non-linear system. In that case the 
original formulation of the problem may be replaced by a system of equations 

5’ = ES (z, CLr, ao, e) + s2x (5, a,, ao, E) 

al . = &A1 (5, aI, ao, 4 

a0 . = A00 (x7 a1, E) + E-40, (x, aI, ao, e) 

which satisfies the assumptions of Theorem 2 (with the sole exception that x is not a scalar variable 
but a vector with two components). The functions S(X, ol, q, E) can be expanded in a Fourier 
series in terms of 0~~ with a zero central term, and the changes of variable (3.2) are readily 
constructed. 

The lemma and both theorems carry over without any change to the case in which the slowest 
variable is not a scalar but a vector of arbitrary dimensions. 
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